Pay-to-TagHash (P2TH): Tagging blockchain
transactions for efficient queryability

Hans Robeers
hrobeers@protonmail.com
https://twitter.com/hrobeers

May 6, 2016

Abstract

Multiple applications are using existing blockchains as a communica-
tion network. Most of these implementations are scanning to blockchain
for transactions matching their own format. However, this requires a full
blockchain node and processing a large blockchain to find application spe-
cific transactions can become expensive to execute. This paper proposes a
tagging mechanism, Pay-to-TagHash (P2TH), that allows efficient lookup
of application specific transactions based on the addition of transaction
outputs to deterministic tagged addresses. P2TH also allows thin clients
to find application specific messages using standard functions exposed by
the widely available blockchain explorers.

This work is licensed under a |Creative Commons @ @ @

“Attribution-ShareAlike 4.0 International” license.

1 Introduction

The blockchain, as first introduced by the Bitcoin [I] network, is used increas-
ingly by third-party applications. Examples of third-party usage includes Col-
ored Coins [3], PeerMessage [6], PeerAssets [7] and multiple others. These appli-
cations typically publish there own specific messages in the form of OP_RETURN
transaction outputs on a third-party blockchain.

Scanning an entire blockchain for messages of a specific form becomes in-
creasingly expensive while the blockchain grows. Applications like PeerMes-
sage [0] only rely on real-time transactions being relayed by the network and
therefore do not suffer from blockchain growth. However, applications like
PeerAssets [7] need know an entire history of asset specific transactions to be
able to validate asset ownership. Therefore these type of applications would
greatly benefit from a system that allows efficient querying of transactions hold-
ing a specific tag.

Blockchain growth also increases disk and memory usage of the full nodes
needed to parse the blockchain for application specific messages. For lightweight
applications, downloading the entire blockchain might become infeasible. A
query mechanism to find these messages using standard lookup functions, would


https://twitter.com/hrobeers
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en

allow these third-party applications to be implemented as thin clients interfacing
with standard blockchain explorers like blockr.io [9].

2 Blockchain queryability

Blockchain clients are designed to efficiently query for transactions, blocks and
addresses by their ids. Therefore the client can be approached as if it’s storing
the blockchain indexed on transactions, blocks and addresses. Querying for non-
indexed data on the blockchain can be considered inefficient and to be avoided
and might even be infeasible using a thin client. For efficient queryability of
application specific transactions on the blockchain, a tagging mechanism based
on the indexed properties can be used.

3 Deterministic tagged address

Blockchain addresses are typically created by hashing the public key of a pub-
lic/private key pair. To generate secure addresses it is recommended to use a
strong random number as a private key. However, as long as little or no funds
are transferred to an address, there is no need for the address to be secure to
theft. Therefore private keys obtained by hashing a publicly known string can
generate what we call a deterministic tagged address.

As an example, the command below demonstrates how a tagged address for
tag “my tag” on the bitcoin network can be created using bitcoin-tool [8], that
can be used for different blockchain networks.

$ bitcoin-tool --input-file <(echo "my tag" | openssl sha256 -binary) \

--input-type private-key \

--input-format raw \

--network bitcoin \

—--output-format base58check \

--output-type address \

—--public-key-compression compressed
194aYsKYk7nF8Lf7Dak4vQaDg85wqPDylg

4 Tagging transactions

To tag a transaction, a Pay-to-PubkeyHash output to a tagged address is added
to the transaction’s outputs. For the output to be valid, it’s value may need to be
non-zero depending on the blockchain used. Although this transaction output is
indistinguishable from a standard Pay-to-PubkeyHash output, we refer to these
outputs as Pay-to-TagHash or P2TH in short.

If we define the function address_for_tag(tag) as the procedure described
in section |3 the following bitcoin command creates a tagged transaction with
tag “my tag”.
createrawtransaction [{ "txid": txid, "vout": n }]

¢ address: amount,

change_address: change_amount,

address_for_tag("my tag"): minimum_amount

}



Note that most networks implement dust spamming counter measures which
are triggered the by low output amount of the tag output. Make sure to check
with the involved communities if these transactions are acceptable on their
network.

5 Querying tagged transactions

Most blockchain clients can efficiently query addresses and their linked transac-
tions by their id. Efficiently finding transactions tagged by a known tag is done
as follows:

e Generate the tagged address as described in section [3
e Query the generated address.

e The tagged transactions are the incoming transactions on this address.

6 Tag salting

Tags are usually human readable and human generated rather than randomly
generated. There is a high probability for tags not to be unique. Therefore,
applications using P2TH should be able to cope with unrelated transactions
coming in on the tagged address, and reduce the client’s performance. A rea-
sonable technique to lower the risk on tag collisions, is adding a publicly known
salt to the tag. This salt might be hard coded in the client application or be
randomly generated and broadcast to the public. It should be noted that salt-
ing cannot mitigate intentional “tag spamming”, but it mitigates unintentional
collisions.

7 Tag spamming

P2TH applications can be attacked by spamming their tagged addresses. Tag
spamming can reduce the applications performance significantly by increasing
the amount of required transaction lookups. In extreme cases it could even
result in a full denial of service (DoS attack). This section proposes counter
measures to “tag spamming”.

7.1 Sent address black-listing

While parsing the tagged transactions, addresses sending many application unre-
lated messages to the tagged address can be blacklisted. The P2TH application
can then ignore all transactions originating from the blacklisted addresses. This
counter measure is quite naive, as spammers can easily use a different address
for every spam message. It might also happen that legitimate addresses get
blacklisted and compromise the proper functioning of the application.



7.2 Proof-of-Burn

An application can require the P2TH output to burn a specific amount, which
would make it costly for attackers to execute a DoS attack. Spam transactions
would still show up in the incoming transaction lookup for the tagged address,
but the client can ignore all transactions below the threshold amount. Proof-of-
Burn requires the P2TH output to be unspendable, meaning that the private key
should not be recoverable from the tag and salt. Therefore a different address
generation procedure is required for a Proof-of-Burn protected implementation.
Instead of generating the private key, we propose to generate the public key as
the hash of the tag + salt.
Using bitcoin-tool on the bitcoin network this looks as follows:

$ bitcoin-tool --input-file <(echo "tag and salt" | openssl sha256 -binary) \
--input-type public-key-sha \
--input-format raw \
--network bitcoin \
--output-format base58check \
--output-type address \
--public-key-compression compressed
12w3JJ84RXmJUZTgaf JJ91vvLg80oUSd jUG

Note that the Peercoin [2] implements a Proof-of-Burn mechanism by re-
quiring a transaction fee of 0.01PPC per kb transaction size. However, this fee
might still be too low to effectively prevent “tag spamming”.

7.3 Spam filtered blockchain explorer

A standard blockchain explorer API can return all transactions on a specific ad-
dress. This functionality is used to discover all transactions related to a specific
tag. Applications can decide to expose a similar web service method that only
returns valid application specific transactions. This centralises spam filtering
and therefore increases the thin client’s performance. It should be noted that
this introduces a single point of failure. Therefore it is recommended to imple-
ment fallback service calls using third-party unfiltered blockchain explorers.

7.4 Hierarchical deterministic wallets

BIP32 [4] proposes a mechanism to generate a fully deterministic tree of private
or public keys based on a single seed. The tag and salt can be used as the seed
to generate such a tree. Applications that model their messages as a chain of
transactions can use such a tree to map it’s messages on. Finding all transactions
with a single tag, becomes considerably more expensive than for a single tagged
address as it requires an extra address lookup for every application message.
However, since every message has a unique tagged address, attacking the entire
application by “tag spamming” becomes practically infeasible.

8 Use case: PeerAssets

This section proposes a performance improvement to the PeerAssets [7] pa-
per as a use case. Contrary to the Peershare [5] project that creates it’s own
blockchain, the PeerAssets paper proposes a way to register, distribute and
trade assets on the Peercoin [2] blockchain. A naive implementation of P2TH



could take the form of adding a simple “PeerAssets” tag to every PeerAssets
specific transaction, which would allow a thin client to parse only the application
specific transactions. However, a slightly more advanced tagging mechanism is
proposed in this section.

8.1 Deck spawning

The process to register a new asset on the blockchain is referred to as “deck
spawning”. A deck is spawned by publishing a message that claims ownership
over a specific asset. From that point on, only the spawning address is al-
lowed to issue tokens of that asset. Therefore, an efficient lookup mechanism to
check if a specific asset already exists without the need to parse all blockchain
transactions, improves the client’s performance considerably. For deck spawn-
ing lookup, one P2TH output for tag "PeerAssets/deck spawning"+salt, is
added to the transaction. The resulting transaction outputs for a deck spawning
transaction look as follows:

OP_RETURN <data>

OP_DUP OP_HASH160 <change_address_pk_hash> OP_EQUALVERIFY OP_CHECKSIG
OP_DUP OP_HASH160 <pk_hash_for_tag("PeerAssets/deck spawning"+sa1t)> OP_EQUALVERIFY OP_CHECKSIG

Figure [1] illustrates the different transaction properties needed to create a
“Deck spawn txn”. The create_txn_id is it’s default transaction id being the
hash of the transaction. This idea will be used to link asset transactions to
their deck spawning transaction.

Deck spawn txn

create_txn_id (txid)
create_addr (vin[@])
spawn_tag_addr (P2TH)
asset_name (OP_RETURN)

1

fnc_tag _address

create_txn_id
create_tag_address

n n
Card transfer txn Card issue txn
from_addr (vin[0]) create_addr (vin[0])
to_addr (P2PKH) to_addr (P2PKH)
create_tag_addr (P2TH) create_tag_addr (P2TH)
transfer_amount (OP_RETURN) transfer_amount (OP_RETURN)

Figure 1: Transaction relations

8.2 Asset transaction

Two types of asset transactions are defined. The “Card transfer transaction” is
a transaction to exchange an existing set of asset tokens. The “Card issue trans-
action” is the special case where asset tokens are created, similar to Bitcoin’s [I]



coinbase transaction. Asset transactions can be linked to their deck spawning
transaction by walking up the transaction chain until the deck spawning trans-
action is reached. However, walking this chain is not trivial in either direction
as transactions can have multiple in- and outputs which may not hold asset
transactions. Therefore tagging the transactions allows walking the chain with
fewer transaction lookups. The common denominator for all asset transactions
is their deck spawning transaction. Therefore it makes sense to tag asset trans-
action by the id of their deck spawning transaction. The resulting transaction
outputs for an asset transaction look as follows:

OP_RETURN <data>

OP_DUP OP_HASH160 <change_address_pk_hash> OP_EQUALVERIFY OP_CHECKSIG
OP_DUP OP_HASH160 <pk_hash_for_tag(deck_spawn_txid)> OP_EQUALVERIFY OP_CHECKSIG

Figure [1] illustrates the one-to-many relationship between the spawning and
issuing transactions. The procedure of generating the tagged address from the
create_txn_id is visualised through fnc_tag address. Note that the card issue
transaction only differs from the transfer transaction by it’s input being the
create_addr.

8.3 Salting

Note that only the deck spawning tag is salted. The id of the deck spawn
transaction is a unique identifier and therefore doesn’t require salting. The
deck spawning salt, or even the generated tagged address, can be hard coded
in the client application making sure that all clients can easily query all “deck
spawning” transactions.

9 Conclusion

Tagging transactions allows the creation of thin clients for blockchain applica-
tions that rely on historical data. This is accomplished by using only standard
lookup functions for addresses and transactions. Tagged address creation based
on generating the private key from a publicly known seed results in insecure
addresses. However, tagged addresses should not be used for value storage and
therefore a secure address in not needed for this purpose. An alternative could
be to generate address’ the public key based on the tag and salt. This makes
funds sent to it practically unspendable, and can act as a Proof-of-Burn mech-
anism to prevent “tag spamming”. Or a tagged address can be generated from
a secret tag while only communicating the tagged address itself, which would
make the funds only spendable by the creator if a secure salt is chosen. By
not sending funds to an unspendable address, they can be redeemed by anyone
knowing or guessing the tag and salt, leaving the blockchain some extra puzzles.

References

[1] S. Nakamoto, Bitcoin: A Peer-to-Peer Electronic Cash System, https://
bitcoin.org/bitcoin.pdf, 2008.

[2] S. King, S. Nadal, PPCoin: Peer-to-Peer Crypto-Currency with Proof-of-
Stake, https://peercoin.net/whitepaper, 2012.


https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
https://peercoin.net/whitepaper

[3] M. Rosenfeld, Overview of Colored Coins, https://bitcoil.co.il/
BitcoinX.pdf, 2012.

[4] P. Wuille, Hierarchical Deterministic Wallets, https://en.bitcoin.it/
wiki/BIP_0032, 2012.

[5] J. Lee, Peershares whitepaper, https://wiki.peercointalk.org/index.
php?title=Peershares_whitepaper] 2013.

[6] Emeth, PeerMessage, https://github.com/Peerapps/Peerapps/tree/
master/peermessagel

[7] Peerchemist, PeerAssets — Peercoin simple assets, http://peerassets.
github.io/WhitePaper, 2016.

[8] Matja, bitcoin-tool, https://github.com/matja/bitcoin-tool.

[9] Blockr, http://blockr.iol


https://bitcoil.co.il/BitcoinX.pdf
https://bitcoil.co.il/BitcoinX.pdf
https://en.bitcoin.it/wiki/BIP_0032
https://en.bitcoin.it/wiki/BIP_0032
https://wiki.peercointalk.org/index.php?title=Peershares_whitepaper
https://wiki.peercointalk.org/index.php?title=Peershares_whitepaper
https://github.com/Peerapps/Peerapps/tree/master/peermessage
https://github.com/Peerapps/Peerapps/tree/master/peermessage
http://peerassets.github.io/WhitePaper
http://peerassets.github.io/WhitePaper
https://github.com/matja/bitcoin-tool
http://blockr.io

	Introduction
	Blockchain queryability
	Deterministic tagged address
	Tagging transactions
	Querying tagged transactions
	Tag salting
	Tag spamming
	Sent address black-listing
	Proof-of-Burn
	Spam filtered blockchain explorer
	Hierarchical deterministic wallets

	Use case: PeerAssets
	Deck spawning
	Asset transaction
	Salting

	Conclusion

